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Abstract

The real timme processing of ocean altimeter waveforin data to obtain higher accuracy
ocean surface height fields has long been thought desirable, but not feasible due to
the computational cost Of existing waveformn processing algorithins. The desirability
of such an algorithin is emphasized hy the improvements in orbital predictions and
geoidmodels, whichmake tile detection of several centimeter level signals using the
Tapex/Posidon mission feasible. In this paper, we present a new technique for faster
than real titne estimation Of height from altimeter waveforins using modest computer
resources, Thealgorithinis tested theoretically using Monte Carlo simulations and
practically using waveforni data from the Geosat altimeter mission. We also examine
the source of errors for the Gieosatheights, and study the possibility of naking empirical
polynomial corrections using waveform fitting. We pay special attention to the length
of time needed to estimnate accurate corrections as well as the functional form such
corrections should take. Theimportance of the non-Gaussian nature of the sea surface

inproducing height biases which me correlated with sea state is also examined.
L Introduction

Satellite altimeters have demoustrated the capability of mapping ocean mesoscale vari-
ability and have shoswn potential in determining basin scale circulation, The TO PEX mis-
sion [Zieger et al., 1991] features precision in the orbit determination and the correction for
geophysical propagation effects sufficient to determine global scale circulation. As the errors
due to the orbit and propagation eflects are reduced, it becomes increasingly desirable to
also reduce the errors due to the height estimation agorithm. These errors include both
short wavelength random noise, and, more importantly, potential long wavelength errors
due to significant wave height (SW H) biases and altimeter misprinting, or the presence of
unmodeled ocean surface effects, such as the surface skewness [Rodriguez,1988).

In addition to the onboard height estimates, satellite atimeters also return the radar
signs], or waveform. This waveform contains information about the surface height, SWH,
backscatter cross section (which maybe related to wind speed), atimeter attitude, and sur-

face skewness. The onboard height estimation algorithm is of necessity rather crude [Chelton



et a. 19,5{)] and an improved estimate of the various parameters can he obtained by using
more optimal algorithims. The most commonly used algorithm isthe least square fitting
of the altimeter return [Hayue and Hauncock, 1991]. The implementation of this algorithm
suffers from the disadvantage that the fitting function cannot he expressed analytically and
numerical derivatives had to be computed. Thismakes the algorithin unsuitable for real
time processing of the waveform data. In order’ to obtain ananalytic fitting function, the
deconvolution method [I, ipa and Barrick, 19S1], [Rodriguez,1988], [Rodriguez and Chap-
man, 19839} was introduced and showu to give realtime unbiased estimates for the height.
However,neither of these agorithms was optimal, in a statistical sense. A maximum like-
lihood algorithm was derived in[Rodriguez,1988} and [Srokosz, 1988). This algorithm has -
the potential of greater accuracy than the previous two algorithms, but again suffers from
the disadvantage that it is numerically dow, due to the fact that the fitting function is not
analytic. An alternate approach to reprocessing the data has been presented by Brenner et
al. [1993], a parametrization Of the return waveform which is not hased on the convolution
model of Brown [1977]. The method proposed in that paper was shown to improve the
oceanographic height signal, but also suffered from being computationally slow, and was
not based on the physical scattering theory, which alows, in principle, the recovery of ocean
surface parameters. In this paper, we solve the problem of how to make the fitting function
analytic, thus allowing for faster than real time processing of altimeter waveforms resulting
in very high accuracy determination of sea state parameters.

The derivation of the fitting algorithm and its performance for the TOPEX and Geosat
altimeters are discussed in the first two sections of this paper. In the third section, we apply
the algorithim to Geosat data. We show how the nominal Geosat point target response can
be shown to he in error, and discuss the estimation of the true point target response from
the data. Finally, we use our algorithm to derive corrections based on SWH and attitude

and compare against the work of Hayne and Hancock{1991].
2. The Fitting Algorithm

The maximum likelihood function,including the effects of bin-to-bin and pulse-to-pulse



signal correlations, was derived in[Rodriguez,1988). Its logarithm is given by
n, I« vi(a;j)
In g la;) = 72—(111 2n) + 5 2: {ln(ei(aj) + ;:—((;Jl)-} (1)
where n is the nummber of data samnples, the q,represent the waveform parameters, the e,

are the eigenvalues of the correlationmatrix for the return waveform

("U = AS'TI)SE(I,‘(E]'} (2)

o= pi— Pla;) =N (3)

where p, is the return powerin the ith bin, £i(a;)is the mean expected signal power given
the fitting parameters, N is the mean expected noise power, D is a diagonal matrix whose

ith clement is e;,and S is an orthogonal transformation. Finally, the vector ?; is defined by
U= 57 (4)

Iugeneral, the correlation matrix is not diagonal: the waveform samples are correlated
witheachother due to the finite sidelobes Of the altimeter point target response [Berger,
1'072], [Rodriguez and Martin, 1992]. This makes the task of estimation cumbersome since
at eachstep of the estimation process the correlation matrix must be calculated and diago-
nalized. However,in theoretics] and experimental studies [Rodriguez and Martin, 1992] we
have shown that the correlations are small, and we will ignore them henceforth. (The effect
of ignoring these correlations will be discussed below). In addition, we will also ignore the
factor 3, In(ei(a;)) as we have found that this factor, since it is not data driven, affects the
minimum of the maximum likelihood function very little. Making these assumptions our
sub-maximum likelihood estimator is given by

P 2
I fsn = 2 (%7;—1—,\%) (5)
w here some coustant factors have been neglected. In the previous expression, %i is the
number of independent signal samples. Due to the effects of pulse-to-pulse correlation, the

number of independent signal samples need not be the same as the number of waveforms




[Berger, 1972], [Lipa and Barrick, 1981], [Rodriguez and Martin, 1992]. The value of 7
again depends on the waveform parameters and cannot becoded efficiently enough for
real tine processing. For the sake of computational efficiency, we set % = n, This will
only be noticeable in the carly part of the leading edge and for low SWH, when pulse-
to-pulse correlation effects may be noticeable. If these assumptions are made, the sub-
maximum likelithood estimator is equivalent to the *maximum likelihood estimator” derived
in[Srokosz, 19ss], when all the correlation effects were neglected. The problem is reduced to
weighted least sguares estimation, wherethe the weighting function is the mean waveform.
Rather thancalculating this quantity iteratively, we use the fact that over short time spans
the ocean parameters, andhence themean waveform, change very little. Thus a good
estimate of the mean wavefor mto be employed in weighting the residues can be obtained
by simply averaging the data:

m

N~ L)
g, = P4+ N = m%pi (6)

where the sum extends over the number of waveforms averaged. For Geosat, for instance,
afteraveraging one second’s worth of waveforims, one obtains the waveform to approximately
3% accuracy. Forthe TOPEX altimeter, which has a higher pulse repetition frequency
(PR}, one second averaging yields the mean waveform to approximately 1.670 accuracy.

Finally, it is useful to reduce the number of estimated parameters in order to increase
the stability of the solution. The return waveform is fully characterized by the following set
of parameters: the surface standard deviation o, the tracker height offset 6k, the skewness
of the specular point distribution A,the off-n adir angle £, the surface radar cross section %o,
and the thermal noise level, N. The therma noiseleveldoes not change over short periods
of time.Since it is a Gaussian process with constant mean, and since the beginning of each
waveform record starts with a section where no signal is present, we estimate the thermal

noise level separately as
m ok

. 1 .
Nz 33wl (7)

j=11=1
where the first sum extends over the different waveforms, and the second sum extends over



the waveform samples inthe thermalnoise region of the waveform. As is well known [Soren-
son,1980], thisis the maximum likelihood estimator for the thermal noise. In our processing,
this constant value is subtracted from al the waveforms used to form its estimate.

After making the previous assumptions, the waveform parameters can be estimated by
minimizing In fgygy,. Thisfunctionis highly nonlinear in the waveformn parameters, which
makesthetask of minimizationnou-trivial. We make use of the fact that the waveform will
be reprocessedonthe ground, when the nominal altimeter algorithms aready give good
estimates for al of the waveform parameters,and linearize about an initial set of estimates,
a, = a”);- éa, . Minimization of the sub-likelihood function is then equivalent to solving

the following linear least squares problem

Z“U‘S“j = /3 (8)
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Fven after the previous approximations have been made, the problem is still compu-
tationally intensive, due to the fact that the mean atimeter waveform aud the derivatives
of the waveformarenot anaytic functions, in genera. The mean return waveform can be
expressed as the convolution of three terms: the surface impulse response [Brown, 1977]
[Rodriguez,1983],the specular point probability density function, and the instrument point
target respouse (ptr), x(¢). An analytic expression exists for the mean return waveform
only when x(¢) is a Gaussian. Unfortunately, for most atimeters, including Seasat, Geosat
and TOPEX, the point target response is a non-analytic function which resembles a sine
function squared ancl is obtained by measurement during the atimeter calibration.

in order to solve this problem, and in the spirit of the wavelet transform, we expand
x(t)asasum of Gaussians of different amplitudes, means and standard deviations

_ 432
(1) = E ¢i exp [— (t——ﬁl] (11)
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Our fitting method for tile ¢:'s, s,'s, and?i’s proceeds iteratively. First, we take the square
root of the altimeter calibrated point target response and alter nate the signs of the peaks to
obtainthe point target responise in the voltage domain, whichis 110w Ny quistsampled. We
then Nvquist interpolate tile point target response to achieve oversampling. We perforn
ascquential least square fit of ii Gaussianfunction for each of theinterpolated ptr peaks,
starting with the largest and progr essing to the smallest, The residuals of this initia fit are
then fit again with another set of Gaussians,andthis procedure is continued until the desired
accuracy is obtained. Figure 1 presents a comparison of the ideal point target reponse and
G aussian fits. Ascan be scen, the fit is excellentaud further accuracy can be obtained by
additional iterations, but this would be unwarranted given the accuracy of the calibration
point target response, Which is approximately 170 [Hayune, private communication]. Using
this approximation, the derivatives of the mean waveform with respect to the waveform

parameters are easily calculated, The results are presented in Appendix A.
3. Theoretical Performance

To assess the accuracy of the previous algorithm, we performed a Monte Carlo simulation
of the fitting procedure. Although the final fitting is linear, and one can formally estimate
the fitting errors, this estimate does not take into account various possible additional sources
of error. Wemention possible breakdownsin the linearization assumption, and the neglect
of pulse-to-pulse correlation and quantization effects.

Our simulation procedure is described fully in [Rodriguez and Chapman, 1989]. Here,
we present a brief description of the main steps. The Geosat telemetry waveform consists of
tile average of 100 pulses, and the pulse repetition frequency (prf) is approximately 1 KHz.
Topex will be transmitting waveforms for Ku-band (14.4 (; Hz) and C-band (5.6 GHz). The
Ku-band prf is approximately 4 KHz, while the C-band prf is approximately 1 KHz. Each
Ku-band waveform will consist of the average of 456 pulses, while each C-band waveform
willbe the average of 110 pulses.

To simulate the estimation process, we generated mean waveforms and added Gaussian

noise to cach waveform. The variance of the noise was determined by the number of pulses,




the signal-to-noise ratio (sur),andthe pulse-to-pulse correlation properties of the waveform.
To take thislast factorinto account. we calculated the decorrelation time by using the van
Cittert-Zeruike theorewn [V Valsh, 19 82], and, fromthis,the number of independent pulse
samples. This number differed fromthe number of pulses only in the leading edge region
and only for the higher prf. The variance of the Gaussian noise was set equal to the mean
waveform value divided by the number of independent samples. The waveform was then
quantizedto 8-bits, asin Geosat or Topex,by an adaptive quantizer which took into account
the largest waveform value.

Simulations were performed for a variety of swh, skewness, and attitude values. The
noisy estimated parameters, withthe exception of the skewness, were passed through a
smoothing filter and the result of this filtering was used for the linearization of the estimation
process. Thetime constant of the filter was set to three seconds, which is equivalent to the
filtering used by existing altimeters.

Results of these Mounte Carlo simulations for the Topex altimeter are presented in Fig-
ure il and contrasted againsttherequirements set for the Topex mission. The results for
Geosatare compared to the actual performance in the next section, As can be seen from Fig-
ure 2, the fitting technique proposed here more than meets the performance requirements.
We note that Figure 2c shows that the accurate estimation of the skewness parameter is

feasible givenamoderate amount of averaging.
4, Retracing of Geosat Waveforms

In order to assess the performance of this waveform fitting algorithm under more realistic
conditions than the Monte Carlo tests described iu the previous secion, we processed two
weeks of waveform data from the later part part of the Geosat Exact Repeat Mission (ERM):
February 29,1988 to March 13, 1988. The measured Geosat point target response [Geosat
1CD] was fit by a set of Gaussian functions with a cutoff amplitude of 10*which produced
arepresentation with errors of absolute maguitude less than than 0.004 when the peak of
the PTR is normalized to unity. Both weighted andunweighted fitting procedures were

tested o1z this Geosat data set.



The results of this first trial onreal data showed reasonable agreement with Geophysical
DataRecords (GD R) values of SWIH, but the height corrections were not in very good
agreement with the G DR values. More significantly, the skewness results were completely
unphysical- muchtoo large inmagnitude and negative in sign, especially for small values of
SWH. Thesource of the discrepancy is indicated by the dashed curves in Figure 3a, which
shows the difference between the fitted theoretical waveform using the Geosat P T'R and the
measured waveform normalized by the measured waveform, averaged over all waveforms
corresponding to GDRSW Hbetween 1.0 and 1.5 m in one day of data (2/29/88). This
solection reduced the masking effects of larger SWH sea states on the waveform. The
relatively large (20%) negative excursioninthe residual curve corresponding to the leading
edge of the average wavefor mshown above shows that the theoretical or fitted waveform is
consistently too large in this region, which suggests that the theoretical PTR has sidelobes
which are too large and explains the observed large negative values of the estimated skewness
as anattempt by the fitting procedure to com pensate for this error. The dashed curve in
Figure 3b shows that thisresult isnot a product of the fitting procedure, as the weighted
residues here are the differences between the theoretical waveform defined by the Geosat
G DRvalues of SWII, €, and Ah, with A = 0. The samme curve shape is evident. We conclude
that the calibration procedure used to obtain the point target response was contaminated
resulting insignificant systematic errors.

Inthe absence of better measurement of the instrument PTR, we attempted to find a
better fitting using a simple parametrized model. The model consisted of the theoretical
PTR,asinc? function, modified by a symmetrical linear weighting function. Our best

estimate for the Geosat PTR thus is

PTR(7) = (‘”'(”B?(I},: 7/7) ) (1~ ajr))
where [3 isthe chirp bandwidth, 7 isthe chirp duration, and « = 0.002 is the weighting
constant. Both the original Geosat PTR and the new PTR are plotted in Figure 4 along
with the difference, which shows that the main peak is narrower and the first sidelobe is

significantly decreased in the new P'I'R, as required. This choice of PTR produces the solid




weighted residual curves in Figure 3. Note that using the Geosat parameters leaves a +10%
errorinthe leading edge whichis removed by the fitting process (Figure 3a).

Therandom-seeming fluctuations at the sub-1% level are for the most part consistent
fromdataset to data set.andare tller{’fore due to slight errorsin the multiplicative scaling
factors used to correct for thefiltergainsin the atimeter correlator[Geosat1CD]. Six of the
multipliers initidlly producederrors greater than 1% and they were corrected to bring error
level back to the 1 % level -  complete correction of the multiplier errors was not attempted
duethe presence of residual P'I'R-induced errors already at the 1% level. This limited
multiplier correctionis aso reflectedinthe solid curves of Figure 3. Similar processing was
also runontwo other daysinthe tivo-week data period, with similar (to +0.2%) results.

Using thiscorrected 1" 1'}{, weretracked the full two-week Geosat data set using the GDR
values for SWH,Ah,and £, and A= 0.0 asinitial values for both weighted and unweighed
fitting algorithms. As a first check on the agorithm performance, we calculated the height
correctionstandard deviation over each 10 sec averaging interval and plotted it against the
mean SWllover the sameinterval in a scatter plot. These results are shown in Figure 5
for both weighted andunweightedalgorithins, along with solid lines showing the expected
dependence obtained from the Moute Carlo simulations. Although the scatter is large, as
expected, theoveralllevels and slopes are consistent, showing slightly decreased level and
dependency on SW} | using the weighted algorithm. This suggests that the Monte Carlo
estimates described in the previous section will be useful guides to the expected performance
of the retracing algorithm.

Comparison between the Geosat GDR estimates for SWH, £2, and 6k (dhsa) and the
results of the retracing algorithm are shown in Figure 6a, b, and ¢, respectively. Weighted
andunweighted fits produced the same results, so only the unweighed fits are shown. Each
graphrepresents the result of 35,500 waveform fits, with the distribution of the results
shown at the top, and thel-ostaudard deviations given by the error bars. Figure 6a
shows the SWH comparisou: the retracked SWH is higher than the GDR value by a nearly

constant offset of 22 cmy. The lower GDR value is consistent with the positive peak in the
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residual curve in Figure 3b. The comparison of squared-attitude £? is shown in Figure 6b,

where the retracked values are genevally less than the GDR values by 0.08 degrees®

over the
ranee 0.1 to 1.3 degrees? which contains most of the data. At higher attitudes of 1.2 to 1.7
deg? theretracked values increase to levels significantly greater thaun tile GDR values (+0.4
a 1.7 deg?), but these conditions are too rare to significantly affect the average weighted
residuals showninligure 3. The higher GDR values are also consistent with the small but
clearly visible slope inthe tail of the residual curves in Figure Ib, which is again removed
by tile fitting process. Pinally, GDRandretracked height corrections éh are plotted in
Figure 6¢. The average retracked height correction is 1.01 cin greater than the GDR data,
but theretracked points clearly show by their shallower slope that the retracking algorithm
calculates less height correction than the standard Geosat algorithm over the whole range
shown (except for asmalloffset around O). over the interval -10cmto +5cm which contains
most Of the data, the retracked corrections range from -8cm to +2cm. The large variances
inthese data are due only partly tonoise- since éh bias hasbeen shown to depend on SWH
and €2 as well as é6h, variation of these quantities will increase the variances shown in each

bin of Figure 6c. Wewill investigate these dependencies in more detail in the next section.
5. Polynomial Corrections to Geosat Data

For Geosat, there are two likely sources for height errors for Geosat: errors due to
attit ude; and, errors due to the skewn ess bias. The Geosat satellite was gravity gradient
stabilized which caused it to have relatively large oscillations in attitude relative to the ocean
geoid: attitudes greater than one degree werenotuncommon. The atimeter tracker suffers
biases due to off-nadir pointing which must subsequently be corrected (luring the ground
processing. For Geosat, the spacecraft attitude was not known to a good enough accuracy to
make these corrections and corrections were made based on the atimeter waveform trailing
edge. During this processing, errors may be introduced if the relationship between attitude
and waveform are notmodeled correctly. The height correction due to attitude errors is
modeled roughly as being linearly dependent on the product of the SWH and the square of

the attitude. If the slope isthis relationship is in error, one would expect to see a linear
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trendinthe residual height error proportional to this product.,

A second unmodeled error source is the skewness bias [Rodriguez,1989): the presence of
vcean surl ace skewnessintroduces a bias which is proportional to the product of skewness
times the SWH. Figure 7 presents ahistogram of the skewness estimated by the algorithmn
for days 60-73 of 1988, Themeanskewnessvalueis about 0.15 and the bulk of the observed
skewness values lie between 0 an 0.3, Thisis consistent with theoretical predictions and
the scant observation made of this quantity [Srokosz andlonguet-Higgins,1986]. A small
number of negative skewness values were observed, but we believe that these arc clue to
estimation noise, rather than to actual negative values. A further discussion of the charac-
teristics of the observed skewness for both Geosat and Topex will be presented elsewhere.
In this paper, we limit ourselves to study its eflect on the height bias.

‘1’0 test thehypothesis forthe sources of the height error, we present in Figure 8a
the residual height error from the waveform retracing binned as a function of the two
parameters mentionedabove for days 60-73 of 1988. This data shows a clear linear trend
as a function of these two parameters. In Figure 8b we present the residual errors after a
linear function is removedfrom the results presented inligure 8a. Theresidual error after
this lincar function is removed is below half a centimeter over most of the data range giving
aclear indication that these two sources of error are sufficient to account for the systematic
errors inthe Geosat tracker.

Since the oceansurface skewnessis not routinely available for making height corrections,
a separate approach has beentaken to obtain height corrections. Hayne et a. [1991] have
advocated the idea of using retracked waveform results to obtain polynomia corrections in
terms of parameters available as part of the available Geophysical Data Record. A possible,
thoughnot unigue, choice of parameters is the SWHand the estimated attitude. The idea
behind this method is that these parameters are correlated to the true error sources and
applying an empirical correction based onthese parameters may remove the bulk of the
errors. Hayne et a. [1991]presentedan example of these correction polynomials based on

a limited set of Geosat data
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Sincethe correctious are empirically derived, one must average over a large data set to
sample the parameter space sufliciently and to obtain a statistically meaningful estimate
for the polynomial coeflicients. The necessary length of time was not addressed by Hayne
et al. [1991]. In this paper, westudy this requirement by averaging the residual height
crror as a function of S\WH and attitude for different integration times. Figures 9a and 9b
present contour plots of theresidual height error for two diflerent averaging periods of one
week. Although there are similar trends inthe two sets of contours, there are also marked
differences. Thisis especially true wherenotmuchdata exists, such asat high attitudes or
high values of SWH. However,evenat low values of SWH differences between the two data
sets are apparent. Figure 9¢ presentsa similar plot, butin this case the averaging time is
two weeks. as canbescen, for this case the contours are smoother and better behaved,
even for high attitudes. We conclude that at least this amount of averaging is required in
ordertoobtain stable estimates for the correction coeflicients.

Another question left open by Hayne etal.is what the degree of the fitting polynomial
should be. To study this question, we fit second and third order polynomials to the error
surface presentedinligure 9c. To take into account the fact that different regions of
parameter space are visited with different frequency, each data point in the fit represented
the average over a bininparameter space and was weighted by the standard error (i.e. the
samplestandard deviation divided by the square root of the number of points in the bin)
when performing the fit, The resulting fits, together with the residua error surfaces, are
presented inligurel0. We observe from these results that, over the bulk of the data, a
cubic fit does not offer a significant improvement over a quadratic fit. About the edges
of parameter space, the cubic does offer someimprovement. However, at the very edge
of the parameter space (high attitude) the cubic errors can be greater than those of the
quadratic fit. This is to be expected since it is widely known that polynomial fits can be
quite inaccurate when extended outside the part of parameter space most heavily weighted
in the fitting. We conclude that for Geosat, a quadratic fitting function is more robust

and probably sufficient to correct for the bulk of the mean height error. Nevertheless,
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since skewness and SWH are independent parameters, one cannot correct completely for
the Ske™ li¢ss bias by makingacorrectionbased o112 SWH done: one will correct for the
global mean of skewness bias, buttheheight residuals will still show a linear trend with the

product of skewness and SWHL
G. Conclusions

Ithaslongbeen recognized intlie altimetric community that it would be desirable to
reprocess altimeter waveform datainorder to obtain improved atimeter perform ance [Bren-
ner et al., 1993]. The major obstacletowards this goa has been the amount of processing
time required by processing algorithms: the traditional belief has been that waveform pro-
cessing could only be done a aratemuch slower than real time, thus making it unfeasible
for operational use. Inthis paper we introduce a method which overcomes these problems
and allows for faster thanrealtime processing of altimeter data using modest computer re-
sources. We have showu that this method produces accurate altimeter heights and SWH’s,
as well as estimates of the skewness of the returnwave form. We presented the results of ap-
plying this algorithm to Geosat data demonstrated the noise performance of the algorithm
cousistent with theoretical estimates. We also showed that the Geosat heights available
in the Geophysical Data Record sufler from biases, and ascribed these biases to attitude
and skewnessinduced errors. Finally, we investigated the possibility of applying empirical
correctionsto the Geosat data and established a minimum averaging time in order that the
estimated corrections remain stable. This algorithm is currently being used to reprocess

Topex data and the results will be discussed in a separate paper.
Appendix A

In this appendix, we derive expressions for the return waveform and its derivatives for
the case when the point target response can be written as a series of Gaussians. The return
waveform is the convolution of three terms[Brown, 1977): the smooth surface response, the

point targetrespouse, audthe surface specular point probability density function. This last
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quantity is given by

| , (t—1,)° A (t-1,)° {1,
J) = NCLT: R [ z‘n} {1 6 (o B 3(‘_%—) (12)

where,rather than expressing the pdf in the heighit domain (2), we have expressed it in the

S

delay time domaiu (t = =2z /c), where ¢ is the speed of light. Inthe previous equation,
t, represents the mean level of the specular points on the ocean surface, and o, represents
the standard deviation, in delay time units, of the specular points about this mean. It is
well ku own that the mean electromagyetic surface need not coincide with the mean Sea
surface, givingrise to the “Electromaguetic Bias” [Rodriguez,1988]. On theotherhand, if
geometric optics is correct, the deviation of the higher order cumulants {rom the sea surface
cumulants is believed to be of second order, or higher, in the wave slope, and hence can be
ignored [Rodrig uez,1988].

The smooth surface response is given by (Rodriguez,1988]

Sty = U(t)exp[-at] Io(ﬁ\/f) (13)
- e ot
“ n 4h(l + h/R) sin® 62 (14)
¢ sin 2£
3 = 4 ,
/ In \//L(l + h/R)sin® 62 (15)

where U(1) represents the unit step function, /o is the zeroth order Bessel function of the
first Kind, h is the altimeter height above the surface, R is the radius of the earth, £ is the
ofl-uadirangle, and o is the antenna beamwidth half-cone angle.

Using the fact that convolution is a linear operator, it is suflicient to obtain the result of
the convolution using a Gaussian of arbitrary amplitude ¢;, displacement, %, and standard
deviat ion, s,. The final result follows by linear superposition. In the presence of skewness,

the ocean specular point distribution convolved with a Gaussian function can be written as

12 , 2 3
fo 0 ciexp [-&%] = c,-%'exp [—%} [1 - (%3) % ( 3. 31)] (16)

t—t,— 1
ro= - (17)

a

o = \Jorta? (18)
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The convolution of equation (16) withthe smooth surface responses cannot be per-
formed analytically. however, if the ofl-nadirangle is of the same order of magnitude, or
smaller, thanhalf the antennabeamwidth, one can approximate the Bessel function above

as
32 24
Iy~ 14 245 1
olz) = 14 1 + G (29

This approximation is better than2% for z < 2. The convolution can now be carried out in a
straightforward, if tedious, fashion.The result, correct to the same order of approximation,
is

2

l)i(T) = I (T [( ) + C 2 )] + 1/ f_:_ exp _1-2_1 (1 _ 6'3(7»)) (20)
N(t) = A \/E;r?o)\p -dr) 1y (C\/rT) 21)
. L Y S T ¢
() = 2(1f<\/_2>+ 1 22)
. _ G a1 e
Co(r) = (o) Vi exp =>- g + 3dr 1) (23)
I(r) = 4 \/Z;r? exp (- (17')%—! (24)
("I}(T) = <%:J> %)\' (7'3 + 3(1T2 + Jd) (25)
d = «ao (26)
3
¢ = (}‘a‘ (27)
T = 1/ _ .tf';t' . d (28)
a

Notice that, when r >>0, the return power asymptotically approaches the smooth surface
respouise. This asymptotic behavior of the power canbe shown to be a general property of
thereturn waveform for point target respousesand surface pdf’s which go to zero asymp-

totically a a fast enough rate.

Using the previousresults, the final expression for the mean return power is given by

= Y anilr) (29)
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Having expressed the return power as a sum of analytic functions, the derivatives of the
power call beexplicitly calculated by computing the derivatives of each term in the sum

and adding them. These derivatives are giveu by the following formulas

dpe - p .
o4 A (30)
O, dr [(¢Vdr)
¢ ¢ Iu (CVdry ¢
()p d [ 2]
= -y - (\p (KN(r)y- 711(,)) 1- A
ot a ZJ [ (01> S (T + 3dr? - 3‘r>
Po& Wh Q\ﬁT ]'1 (32)
Io( Q\/-T
Ip, 0, 72 . 2 a, 3 A
e— — exp — — (=THh(m)+ L)+ — =
()(70 “ e f;ro 2 [ %[ ) « Ty 6
[T]\ (1) (r‘ + 3dr? - 31 + 3([) — L(r) (15 +3dr? — 3+ 3dr? + Gd)”
L(7) 1,( ) 1 72
5 T T )T iy X _— »'
4 py ¢+ o I exp [ 5 ] Cs (33)
Ip; " 1 2] (4
GG L —eXp |- — | —2 4
o 1\(T)/\ - L(T) '27r(\l)|: 2} 3 (34
pa = N(7T)( )+ (7)) (35)
1 72
o= L(7) Jon exp [*" (1 - Cs(7)) (36)

The reader willnotice that we have computed the partial derivative of the power with
respect to (?rather than ¢. This subtlety is due to the fact that, as (— O, then & — O,
whichimplies that, close to vanishing attitude (the nominal condition!), the power becomes
completely insensitive to attitude, and hence the attitude cannot be estimated, However,
the return power is not insensitive to attitude squared, even for vanishing attitudes. The
price one pays for being able to estimate this parameter is that, due to the presence of
noise, anegative value of attitude squared will sometimes be estimated: the asymptotic
distribution of the estimates of the attitude squared when the true attitude is zero is a
Gaussiancentered at zero attitude sguared, and in this case half of the values estimated

will be negative. Thisinconveniencemay be ameliorated by averaging the estimates (which
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willasymptotically produce anuubiased estimator) or by setting all negative values to zero
(which will produce a biased estimate).

The equation s for the partial deri vati ves are somewhat complicated, but they simplify
significantly if the derivatives are taken about A = 0, as has, in fact, been done in the
implementation of thealgorithm. The partial derivative of the total power with respect to

any variable & cannow be written as

Ip <~  Op;
e 2= “or (37)

which is the relationship needed forimplementing our algorithm.
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Figure 1 :A comparisonof the exact theoretical point target response and the one
obtained by the Gaussian pseudo-wavelet decomposition (solid curves). The dashed curve
shows the difference between the two curves.

Figure 22 Monte C'arlo performance of the estimation algorithm. a) Height estimation
performance:the squares show the Topexinstrument pre-launch performance for one second
data averaging; the solid circles show the maximum likelihood performance. These estimates
arc uncorrelated fromsample to sample, unlike the altimeter tracker estimates, which are
correlated duetotheon-board tracking (smoothing) algorithm. The lowest curve shows the
algorithmperformancewiththe saine amount of smoothing as the Topex on-board tracker.
b) Significant wave height performance (same symbols as in (a)), ¢) Skewness estimation
performaunce.

Figure 3: Fractionalresiduals fromthe waveform fit (a) and from a waveform com-
puted using the parameters in the GDR's. The dashed curves show the residuals using the
calibration point target respouse which show large errors for both the retracked and the
GDRestimated parameters. The solid line shows the residuals after PTR optimization.
Notice thatevenafter 1 *1{ optimization, the GDR estimates show large residuals about
the leading edge. Thisis consistent with the height errors shown in the following figures.
Notice also that the GDRresidualsshow a trend in the trailing edge: this inconsistent with
tile attitude errors discussed in the text.

Figure 4: Comparison of the calibration PTR (dashed line) and the optimized PTR
(solid line). Notice thatthe differences are small, but, as shown in the previous figure, can
have significant effects on the residuals,

Figure 5. Measured height noise for weighted (@) and unweighed (b) estimation, The
points show the measurements, while the solid lines are the Monte Carlo predictions. A good
agreement is observed between theory and observation. The weighted algorithm performs
somewhat better for higher values of SW H, but the difference is not as marked for the
smaller values of SWH.

Figure6: A comparison of the waveform retracking estimated parameters and those
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appearinginthe GDR. The upper plot presents the percentage of the data ineach bin, while
the lower plot shows a binnedscatterplotof the two quantities. The error bars represent the
data variance in each bin. 6a)Significant Wave Height; 6b) Attitude squared; 6c¢) Height
correction.

Figure 7: A histogram of the observed skewness for days 60-73 of 1988.

Figure 8: @ Retracking height correction binned as a function of SWH times attitude
squared and SWH times skewness. b)Residuals from this surface after a best bit linear
function is removed.

Figure 9: Retracking leight collection binnedas a function of SWH and attitude: a)
average of data in days 60-6G of 1988; b) average of data in days 67-73 of 1988; c) average
of data inthe two weekperiod. Noticethat there is a significant amount of variation from
week toweek.

Figure 10: Residuals from tile previous surface after quadratic and cubic polynomials
are removed. 10a) and lob) showthe quadratic and cubic surfaces respectively. 10c) and

10d) show the corresponding residuals.
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